图像处理之双边滤波效果(Bilateral Filtering for Gray and Color Image)

基本介绍:

普通的时空域的低通滤波器,在像素空间完成滤波以后,导致图像的边缘部分也变得不那么明显,

整张图像都变得同样的模糊,图像边缘细节丢失。双边滤波器(ABilateral Filter)可以很好的保

留边缘的同时消除噪声。双边滤波器能做到这些原因在于它不像普通的高斯/卷积低通滤波,只考

虑了位置对中心像素的影响,它还考虑了卷积核中像素与中心像素之间相似程度的影响,根据位置

影响与像素值之间的相似程度生成两个不同的权重表(WeightTable),在计算中心像素的时候加以

考虑这两个权重,从而实现双边低通滤波。据说AdobePhotoshop的高斯磨皮功能就是应用了

双边低通滤波算法实现。

程序效果:

看我们的美女lena应用双边滤镜之后

程序关键代码解释:

建立距离高斯权重表(Weight Table)如下:

private void buildDistanceWeightTable() { 	int size = 2 * radius + 1; 	cWeightTable = new double[size][size]; 	for(int semirow = -radius; semirow <= radius; semirow++) { 		for(int semicol = - radius; semicol <= radius; semicol++) { 			// calculate Euclidean distance between center point and close pixels 			double delta = Math.sqrt(semirow * semirow + semicol * semicol)/ds; 			double deltaDelta = delta * delta; 			cWeightTable[semirow+radius][semicol+radius] = Math.exp(deltaDelta * factor); 		} 	} }
建立RGB值像素度高斯权重代码如下:

private void buildSimilarityWeightTable() { 	sWeightTable = new double[256]; // since the color scope is 0 ~ 255 	for(int i=0; i<256; i++) { 		double delta = Math.sqrt(i * i ) / rs; 		double deltaDelta = delta * delta; 		sWeightTable[i] = Math.exp(deltaDelta * factor); 	} }
完成权重和计算与像素×权重和计算代码如下:

for(int semirow = -radius; semirow <= radius; semirow++) { 	for(int semicol = - radius; semicol <= radius; semicol++) { 		if((row + semirow) >= 0 && (row + semirow) < height) { 			rowOffset = row + semirow; 		} else { 			rowOffset = 0; 		} 		 		if((semicol + col) >= 0 && (semicol + col) < width) { 			colOffset = col + semicol; 		} else { 			colOffset = 0; 		} 		index2 = rowOffset * width + colOffset; 		ta2 = (inPixels[index2] >> 24) & 0xff;         tr2 = (inPixels[index2] >> 16) & 0xff;         tg2 = (inPixels[index2] >> 8) & 0xff;         tb2 = inPixels[index2] & 0xff;                  csRedWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tr2 - tr))];         csGreenWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tg2 - tg))];         csBlueWeight = cWeightTable[semirow+radius][semicol+radius]  * sWeightTable[(Math.abs(tb2 - tb))];                  csSumRedWeight += csRedWeight;         csSumGreenWeight += csGreenWeight;         csSumBlueWeight += csBlueWeight;         redSum += (csRedWeight * (double)tr2);         greenSum += (csGreenWeight * (double)tg2);         blueSum += (csBlueWeight * (double)tb2); 	} }
完成归一化,得到输出像素点RGB值得代码如下:

tr = (int)Math.floor(redSum / csSumRedWeight); tg = (int)Math.floor(greenSum / csSumGreenWeight); tb = (int)Math.floor(blueSum / csSumBlueWeight); outPixels[index] = (ta << 24) | (clamp(tr) << 16) | (clamp(tg) << 8) | clamp(tb);
关于什么卷积滤波,请参考:

关于高斯模糊算法,请参考:

最后想说,不给出源代码的博文不是好博文,基于Java完成的双边滤波速度有点慢

可以自己优化,双边滤镜完全源代码如下:

package com.gloomyfish.blurring.study; /**  *  A simple and important case of bilateral filtering is shift-invariant Gaussian filtering  *  refer to - http://graphics.ucsd.edu/~iman/Denoising/  *  refer to - http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html  *  thanks to cyber  */ import java.awt.image.BufferedImage;  public class BilateralFilter extends AbstractBufferedImageOp { 	private final static double factor = -0.5d; 	private double ds; // distance sigma 	private double rs; // range sigma 	private int radius; // half length of Gaussian kernel Adobe Photoshop  	private double[][] cWeightTable; 	private double[] sWeightTable; 	private int width; 	private int height; 	 	public BilateralFilter() { 		this.ds = 1.0f; 		this.rs = 1.0f; 	} 	 	private void buildDistanceWeightTable() { 		int size = 2 * radius + 1; 		cWeightTable = new double[size][size]; 		for(int semirow = -radius; semirow <= radius; semirow++) { 			for(int semicol = - radius; semicol <= radius; semicol++) { 				// calculate Euclidean distance between center point and close pixels 				double delta = Math.sqrt(semirow * semirow + semicol * semicol)/ds; 				double deltaDelta = delta * delta; 				cWeightTable[semirow+radius][semicol+radius] = Math.exp(deltaDelta * factor); 			} 		} 	} 	 	/** 	 * for gray image 	 * @param row 	 * @param col 	 * @param inPixels 	 */ 	private void buildSimilarityWeightTable() { 		sWeightTable = new double[256]; // since the color scope is 0 ~ 255 		for(int i=0; i<256; i++) { 			double delta = Math.sqrt(i * i ) / rs; 			double deltaDelta = delta * delta; 			sWeightTable[i] = Math.exp(deltaDelta * factor); 		} 	} 	 	public void setDistanceSigma(double ds) { 		this.ds = ds; 	} 	 	public void setRangeSigma(double rs) { 		this.rs = rs; 	}  	@Override 	public BufferedImage filter(BufferedImage src, BufferedImage dest) { 		width = src.getWidth();         height = src.getHeight();         //int sigmaMax = (int)Math.max(ds, rs);         //radius = (int)Math.ceil(2 * sigmaMax);         radius = (int)Math.max(ds, rs);         buildDistanceWeightTable();         buildSimilarityWeightTable();         if ( dest == null )         	dest = createCompatibleDestImage( src, null );          int[] inPixels = new int[width*height];         int[] outPixels = new int[width*height];         getRGB( src, 0, 0, width, height, inPixels );         int index = 0; 		double redSum = 0, greenSum = 0, blueSum = 0; 		double csRedWeight = 0, csGreenWeight = 0, csBlueWeight = 0; 		double csSumRedWeight = 0, csSumGreenWeight = 0, csSumBlueWeight = 0;         for(int row=0; row
> 24) & 0xff; tr = (inPixels[index] >> 16) & 0xff; tg = (inPixels[index] >> 8) & 0xff; tb = inPixels[index] & 0xff; int rowOffset = 0, colOffset = 0; int index2 = 0; int ta2 = 0, tr2 = 0, tg2 = 0, tb2 = 0; for(int semirow = -radius; semirow <= radius; semirow++) { for(int semicol = - radius; semicol <= radius; semicol++) { if((row + semirow) >= 0 && (row + semirow) < height) { rowOffset = row + semirow; } else { rowOffset = 0; } if((semicol + col) >= 0 && (semicol + col) < width) { colOffset = col + semicol; } else { colOffset = 0; } index2 = rowOffset * width + colOffset; ta2 = (inPixels[index2] >> 24) & 0xff; tr2 = (inPixels[index2] >> 16) & 0xff; tg2 = (inPixels[index2] >> 8) & 0xff; tb2 = inPixels[index2] & 0xff; csRedWeight = cWeightTable[semirow+radius][semicol+radius] * sWeightTable[(Math.abs(tr2 - tr))]; csGreenWeight = cWeightTable[semirow+radius][semicol+radius] * sWeightTable[(Math.abs(tg2 - tg))]; csBlueWeight = cWeightTable[semirow+radius][semicol+radius] * sWeightTable[(Math.abs(tb2 - tb))]; csSumRedWeight += csRedWeight; csSumGreenWeight += csGreenWeight; csSumBlueWeight += csBlueWeight; redSum += (csRedWeight * (double)tr2); greenSum += (csGreenWeight * (double)tg2); blueSum += (csBlueWeight * (double)tb2); } } tr = (int)Math.floor(redSum / csSumRedWeight); tg = (int)Math.floor(greenSum / csSumGreenWeight); tb = (int)Math.floor(blueSum / csSumBlueWeight); outPixels[index] = (ta << 24) | (clamp(tr) << 16) | (clamp(tg) << 8) | clamp(tb); // clean value for next time... redSum = greenSum = blueSum = 0; csRedWeight = csGreenWeight = csBlueWeight = 0; csSumRedWeight = csSumGreenWeight = csSumBlueWeight = 0; } } setRGB( dest, 0, 0, width, height, outPixels ); return dest; } public static int clamp(int p) { return p < 0 ? 0 : ((p > 255) ? 255 : p); } public static void main(String[] args) { BilateralFilter bf = new BilateralFilter(); bf.buildSimilarityWeightTable(); } }

感觉不错,请顶一下!

转载文章请务必注明出自本博客